Tracked vehicle example (demo_MBS_tracks.cpp)
Simulate a simplified vehicle with tracks, that interact with obstacles, and that can be driven by the user.
This tutorial shows how to:
- create different 'families' of collision objects (ex. to avoid that unnecessry contacts are created between adjacent track shoes).
- make custom compound collision shapes.
- load a non-concave collision mesh that is decomposed in convex parts
// =============================================================================
// PROJECT CHRONO - http://projectchrono.org
//
// Copyright (c) 2014 projectchrono.org
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file at the top level of the distribution and at
// http://projectchrono.org/license-chrono.txt.
//
// =============================================================================
// Authors: Alessandro Tasora
// =============================================================================
//
// Demo code about
// - modeling tracks with articulated shoes (as an example of complex model with
// collisions and constraints)
// - using different meshes for collision and visualization
// - using clones of collision shapes
// - using DisallowCollisionsWith, SetFamily etc. to avoid
// collisions between different families of bodies.
//
// =============================================================================
#include <cmath>
#include "chrono/core/ChRealtimeStep.h"
#include "chrono/geometry/ChTriangleMeshSoup.h"
#include "chrono/physics/ChBodyEasy.h"
#include "chrono/physics/ChLinkMotorRotationSpeed.h"
#include "chrono/physics/ChSystemNSC.h"
#include "chrono/core/ChRealtimeStep.h"
#include "chrono/core/ChRandom.h"
#include "chrono_irrlicht/ChVisualSystemIrrlicht.h"
#include "chrono_irrlicht/ChIrrMeshTools.h"
// Use the namespaces of Chrono
using namespace chrono;
using namespace chrono::irrlicht;
// Use the main namespaces of Irrlicht
using namespace irr;
using namespace irr::core;
using namespace irr::scene;
using namespace irr::video;
using namespace irr::io;
using namespace irr::gui;
// First of all, define a class for the 'tank' (that is, a set of
// bodies and links which are grouped within this class; so it is
// easier to manage data structures in this example).
class MySimpleTank {
public:
// THE DATA
double throttleL; // actual value 0...1 of gas throttle (left).
double throttleR; // actual value 0...1 of gas throttle (right).
double max_motor_speed; // the max rotation speed of the motor [rads/s]
// The parts making the tank, as 3d Irrlicht scene nodes, each containing
// the ChBody object
// .. truss:
std::shared_ptr<ChBody> truss;
// .. right front suspension:
std::shared_ptr<ChBody> wheelRF;
std::shared_ptr<ChLinkLockRevolute> link_revoluteRF;
// .. left front suspension:
std::shared_ptr<ChBody> wheelLF;
std::shared_ptr<ChLinkLockRevolute> link_revoluteLF;
// .. right back suspension:
std::shared_ptr<ChBody> wheelRB;
std::shared_ptr<ChLinkMotorRotationSpeed> link_motorRB;
// .. left back suspension:
std::shared_ptr<ChBody> wheelLB;
std::shared_ptr<ChLinkMotorRotationSpeed> link_motorLB;
// THE FUNCTIONS
// Build and initialize the tank, creating all bodies corresponding to
// the various parts and adding them to the physical system - also creating
// and adding constraints to the system.
MySimpleTank(ChSystemNSC& sys) {
throttleL = throttleR = 0; // initially, gas throttle is 0.
max_motor_speed = 10;
double my = 0.5; // left back hub pos
double mx = 0;
double shoelength = 0.2;
double shoemass = 2;
double radiustrack = 0.31;
double wheeldiameter = 0.280 * 2;
int nwrap = 6;
int ntiles = 7;
double rlwidth = 1.20;
double passo = (ntiles + 1) * shoelength;
ChVector3d cyl_displA(0, 0.075 + 0.02, 0);
ChVector3d cyl_displB(0, -0.075 - 0.02, 0);
double cyl_thickness = 0.09;
// --- The tank body ---
truss = chrono_types::make_shared<ChBodyEasyMesh>( //
1000, // density
false, // do not evaluate mass automatically
true, // create visualization asset
false, // do not collide
nullptr, // no need for contact material
0 // swept sphere radius
);
sys.Add(truss);
truss->SetPos(ChVector3d(mx + passo / 2, my + radiustrack, rlwidth / 2));
truss->SetMass(350);
truss->SetInertiaXX(ChVector3d(13.8, 13.5, 10));
// --- Contact and visualization materials for wheels ---
auto wheel_mat = chrono_types::make_shared<ChContactMaterialNSC>();
wheel_mat->SetFriction(1.0);
auto wheel_mat_vis = chrono_types::make_shared<ChVisualMaterial>();
wheel_mat_vis->SetDiffuseColor(ChColor(0.2f, 0.2f, 0.2f));
// --- Wheel collision shape
auto wheel_shape =
chrono_types::make_shared<ChCollisionShapeCylinder>(wheel_mat, wheeldiameter / 2, cyl_thickness);
// --- Right Front suspension ---
// ..the tank right-front wheel
wheelRF = chrono_types::make_shared<ChBodyEasyMesh>( //
1000, // density
false, // do not compute mass and inertia
true, // visualization?
false, // collision?
nullptr, // no need for contact material
0); // mesh sweep sphere radius
sys.Add(wheelRF);
wheelRF->SetPos(ChVector3d(mx + passo, my + radiustrack, 0));
wheelRF->SetRot(QuatFromAngleX(CH_PI / 2));
wheelRF->SetMass(9.0);
wheelRF->SetInertiaXX(ChVector3d(1.2, 1.2, 1.2));
wheelRF->AddCollisionShape(wheel_shape, ChFrame<>(cyl_displA, QuatFromAngleX(CH_PI_2)));
wheelRF->AddCollisionShape(wheel_shape, ChFrame<>(cyl_displB, QuatFromAngleX(CH_PI_2)));
wheelRF->EnableCollision(true);
wheelRF->GetVisualShape(0)->SetMaterial(0, wheel_mat_vis);
// .. create the revolute joint between the wheel and the truss
link_revoluteRF = chrono_types::make_shared<ChLinkLockRevolute>(); // right, front, upper, 1
link_revoluteRF->Initialize(wheelRF, truss, ChFrame<>(ChVector3d(mx + passo, my + radiustrack, 0), QUNIT));
sys.AddLink(link_revoluteRF);
// --- Left Front suspension ---
// ..the tank left-front wheel
wheelLF = chrono_types::make_shared<ChBodyEasyMesh>( //
1000, // density
false, // do not compute mass and inertia
true, // visualization?
false, // collision?
nullptr, // no need for contact material
0); // mesh sweep sphere radius
sys.Add(wheelLF);
wheelLF->SetPos(ChVector3d(mx + passo, my + radiustrack, rlwidth));
wheelLF->SetRot(QuatFromAngleX(CH_PI / 2));
wheelLF->SetMass(9.0);
wheelLF->SetInertiaXX(ChVector3d(1.2, 1.2, 1.2));
wheelLF->AddCollisionShape(wheel_shape, ChFrame<>(cyl_displA, QuatFromAngleX(CH_PI_2)));
wheelLF->AddCollisionShape(wheel_shape, ChFrame<>(cyl_displB, QuatFromAngleX(CH_PI_2)));
wheelLF->EnableCollision(true);
wheelLF->GetVisualShape(0)->SetMaterial(0, wheel_mat_vis);
// .. create the revolute joint between the wheel and the truss
link_revoluteLF = chrono_types::make_shared<ChLinkLockRevolute>(); // left, front, upper, 1
link_revoluteLF->Initialize(wheelLF, truss,
sys.AddLink(link_revoluteLF);
// --- Right Back suspension ---
// ..the tank right-back wheel
wheelRB = chrono_types::make_shared<ChBodyEasyMesh>( //
1000, // density
false, // do not compute mass and inertia
true, // visualization?
false, // collision?
nullptr, // no need for contact material
0); // mesh sweep sphere radius
sys.Add(wheelRB);
wheelRB->SetPos(ChVector3d(mx, my + radiustrack, 0));
wheelRB->SetRot(QuatFromAngleX(CH_PI / 2));
wheelRB->SetMass(9.0);
wheelRB->SetInertiaXX(ChVector3d(1.2, 1.2, 1.2));
wheelRB->AddCollisionShape(wheel_shape, ChFrame<>(cyl_displA, QuatFromAngleX(CH_PI_2)));
wheelRB->AddCollisionShape(wheel_shape, ChFrame<>(cyl_displB, QuatFromAngleX(CH_PI_2)));
wheelRB->EnableCollision(true);
wheelRB->GetVisualShape(0)->SetMaterial(0, wheel_mat_vis);
// .. create the motor joint between the wheel and the truss (simplified motor model: just impose speed..)
link_motorRB = chrono_types::make_shared<ChLinkMotorRotationSpeed>();
link_motorRB->SetSpeedFunction(
chrono_types::make_shared<ChFunctionConst>()); // actually, default function type
sys.AddLink(link_motorRB);
// --- Left Back suspension ---
// ..the tank left-back wheel
wheelLB = chrono_types::make_shared<ChBodyEasyMesh>( //
1000, // density
false, // do not compute mass and inertia
true, // visualization?
false, // collision?
nullptr, // no need for contact material
0); // mesh sweep sphere radius
sys.Add(wheelLB);
wheelLB->SetPos(ChVector3d(mx, my + radiustrack, rlwidth));
wheelLB->SetRot(QuatFromAngleX(CH_PI / 2));
wheelLB->SetMass(9.0);
wheelLB->SetInertiaXX(ChVector3d(1.2, 1.2, 1.2));
wheelLB->AddCollisionShape(wheel_shape, ChFrame<>(cyl_displA, QuatFromAngleX(CH_PI_2)));
wheelLB->AddCollisionShape(wheel_shape, ChFrame<>(cyl_displB, QuatFromAngleX(CH_PI_2)));
wheelLB->EnableCollision(true);
wheelLB->GetVisualShape(0)->SetMaterial(0, wheel_mat_vis);
// .. create the motor joint between the wheel and the truss (simplified motor model: just impose speed..)
link_motorLB = chrono_types::make_shared<ChLinkMotorRotationSpeed>();
link_motorLB->SetSpeedFunction(
chrono_types::make_shared<ChFunctionConst>()); // actually, default function type
link_motorLB->Initialize(wheelLB, truss, ChFrame<>(ChVector3d(mx, my + radiustrack, rlwidth), QUNIT));
sys.AddLink(link_motorLB);
//--- TRACKS ---
// Shared visualization models
auto shoe_trimesh =
ChTriangleMeshConnected::CreateFromWavefrontFile(GetChronoDataFile("models/bulldozer/shoe_view.obj"));
auto shoe_mesh = chrono_types::make_shared<ChVisualShapeTriangleMesh>();
shoe_mesh->SetMesh(shoe_trimesh);
shoe_mesh->SetVisible(true);
auto shoe_coll_trimesh =
ChTriangleMeshConnected::CreateFromWavefrontFile(GetChronoDataFile("models/bulldozer/shoe_collision.obj"));
auto shoe_coll_mesh = chrono_types::make_shared<ChVisualShapeTriangleMesh>();
shoe_coll_mesh->SetMesh(shoe_coll_trimesh);
shoe_coll_mesh->SetVisible(false);
// Load a triangle mesh for collision
auto trimesh =
ChTriangleMeshConnected::CreateFromWavefrontFile(GetChronoDataFile("models/bulldozer/shoe_collision.obj"));
ChVector3d mesh_displacement(shoelength * 0.5, 0, 0); // as mesh origin is not in body center of mass
ChVector3d joint_displacement(-shoelength * 0.5, 0, 0); // pos. of shoe-shoe constraint, relative to COG.
chrono::ChVector3d position;
chrono::ChQuaternion<> rotation;
for (int side = 0; side < 2; side++) {
mx = 0;
mx += shoelength;
double mz = (side == 0) ? 0 : rlwidth;
std::string prefix = (side == 0) ? "L_" : "R_";
position.Set(mx, my, mz);
rotation = QUNIT;
// Create sample body (with empty collision shape; later create the collision model by adding the
// coll.shapes)
auto firstBodyShoe = chrono_types::make_shared<ChBody>();
sys.Add(firstBodyShoe);
firstBodyShoe->SetName(prefix + "shoe_0");
firstBodyShoe->SetMass(shoemass);
firstBodyShoe->SetPos(position);
firstBodyShoe->SetRot(rotation);
firstBodyShoe->SetInertiaXX(ChVector3d(0.1, 0.1, 0.1));
// Visualization:
firstBodyShoe->AddVisualShape(shoe_mesh, ChFrame<>(-mesh_displacement, ChMatrix33<>(1)));
firstBodyShoe->AddVisualShape(shoe_coll_mesh, ChFrame<>(-mesh_displacement, ChMatrix33<>(1)));
// Collision:
auto coll_model = chrono_types::make_shared<ChCollisionModel>();
coll_model->SetSafeMargin(0.004f); // inward safe margin
coll_model->SetEnvelope(0.010f); // distance of the outward "collision envelope"
auto coll_shape = chrono_types::make_shared<ChCollisionShapeTriangleMesh>(
chrono_types::make_shared<ChContactMaterialNSC>(), trimesh, false, false, 0.005);
firstBodyShoe->AddCollisionModel(coll_model);
firstBodyShoe->EnableCollision(true);
// Avoid creation of contacts with neighbouring shoes, using
// a collision family (=3) that does not collide with itself
firstBodyShoe->GetCollisionModel()->SetFamily(3);
firstBodyShoe->GetCollisionModel()->DisallowCollisionsWith(3);
std::shared_ptr<ChBody> previous_rigidBodyShoe;
previous_rigidBodyShoe = firstBodyShoe;
int shoe_index = 1;
for (int nshoe = 1; nshoe < ntiles; nshoe++) {
mx += shoelength;
position.Set(mx, my, mz);
auto rigidBodyShoe =
MakeShoe(previous_rigidBodyShoe, firstBodyShoe, position, rotation, sys, joint_displacement);
rigidBodyShoe->SetName(prefix + "shoe_" + std::to_string(shoe_index++));
rigidBodyShoe->AddVisualShape(shoe_mesh, ChFrame<>(-mesh_displacement, ChMatrix33<>(1)));
rigidBodyShoe->AddVisualShape(shoe_coll_mesh, ChFrame<>(-mesh_displacement, ChMatrix33<>(1)));
previous_rigidBodyShoe = rigidBodyShoe;
}
for (int nshoe = 0; nshoe < nwrap; nshoe++) {
double alpha = (CH_PI / ((double)(nwrap - 1.0))) * ((double)nshoe);
double lx = mx + shoelength + radiustrack * std::sin(alpha);
double ly = my + radiustrack - radiustrack * std::cos(alpha);
position.Set(lx, ly, mz);
rotation = chrono::QuatFromAngleZ(alpha);
auto rigidBodyShoe =
MakeShoe(previous_rigidBodyShoe, firstBodyShoe, position, rotation, sys, joint_displacement);
rigidBodyShoe->SetName(prefix + "shoe_" + std::to_string(shoe_index++));
rigidBodyShoe->AddVisualShape(shoe_mesh, ChFrame<>(-mesh_displacement, ChMatrix33<>(1)));
rigidBodyShoe->AddVisualShape(shoe_coll_mesh, ChFrame<>(-mesh_displacement, ChMatrix33<>(1)));
previous_rigidBodyShoe = rigidBodyShoe;
}
for (int nshoe = (ntiles - 1); nshoe >= 0; nshoe--) {
position.Set(mx, my + 2 * radiustrack, mz);
auto rigidBodyShoe =
MakeShoe(previous_rigidBodyShoe, firstBodyShoe, position, rotation, sys, joint_displacement);
rigidBodyShoe->SetName(prefix + "shoe_" + std::to_string(shoe_index++));
rigidBodyShoe->AddVisualShape(shoe_mesh, ChFrame<>(-mesh_displacement, ChMatrix33<>(1)));
rigidBodyShoe->AddVisualShape(shoe_coll_mesh, ChFrame<>(-mesh_displacement, ChMatrix33<>(1)));
previous_rigidBodyShoe = rigidBodyShoe;
mx -= shoelength;
}
for (int nshoe = 0; nshoe < nwrap; nshoe++) {
double alpha = CH_PI + (CH_PI / ((double)(nwrap - 1.0))) * ((double)nshoe);
double lx = mx + 0 + radiustrack * std::sin(alpha);
double ly = my + radiustrack - radiustrack * std::cos(alpha);
position.Set(lx, ly, mz);
rotation = chrono::QuatFromAngleZ(alpha);
auto rigidBodyShoe =
MakeShoe(previous_rigidBodyShoe, firstBodyShoe, position, rotation, sys, joint_displacement);
rigidBodyShoe->SetName(prefix + "shoe_" + std::to_string(shoe_index++));
rigidBodyShoe->AddVisualShape(shoe_mesh, ChFrame<>(-mesh_displacement, ChMatrix33<>(1)));
rigidBodyShoe->AddVisualShape(shoe_coll_mesh, ChFrame<>(-mesh_displacement, ChMatrix33<>(1)));
previous_rigidBodyShoe = rigidBodyShoe;
}
// close track
ChVector3d linkpos = firstBodyShoe->TransformPointLocalToParent(joint_displacement);
auto link_revolute_shoeshoe = chrono_types::make_shared<ChLinkLockRevolute>();
link_revolute_shoeshoe->Initialize(firstBodyShoe, previous_rigidBodyShoe, ChFrame<>(linkpos, QUNIT));
sys.AddLink(link_revolute_shoeshoe);
}
}
// Delete the tank object, deleting also all bodies corresponding to
// the various parts and removing them from the physical system. Also
// removes constraints from the system.
~MySimpleTank() {
ChSystem* mysystem = truss->GetSystem(); // trick to get the system here
mysystem->Remove(link_revoluteRF);
mysystem->Remove(link_revoluteLF);
mysystem->Remove(link_motorRB);
mysystem->Remove(link_motorLB);
mysystem->Remove(truss);
mysystem->Remove(wheelRF);
mysystem->Remove(wheelLF);
mysystem->Remove(wheelRB);
mysystem->Remove(wheelLB);
}
// Utility function to create quickly a track shoe connected to the previous one
std::shared_ptr<ChBody> MakeShoe(
std::shared_ptr<ChBody> previous_shoe, // will be linked with this one with revolute joint
std::shared_ptr<ChBody> template_shoe, // collision geometry will be shared with this body
ChVector3d position, // position
ChQuaternion<> rotation, // orientation
ChSystemNSC& sys, // the physical system
chrono::ChVector3d joint_displacement // position of shoe-shoe constraint, relative to COG.
) {
auto rigidBodyShoe = std::shared_ptr<ChBody>(template_shoe.get()->Clone());
rigidBodyShoe->SetPos(position);
rigidBodyShoe->SetRot(rotation);
sys.Add(rigidBodyShoe);
auto coll_model = chrono_types::make_shared<ChCollisionModel>(*template_shoe->GetCollisionModel());
rigidBodyShoe->AddCollisionModel(coll_model);
rigidBodyShoe->EnableCollision(true);
// Other settings are already copied from template_shoe, except for family and mask.
// Avoid creation of contacts with neighbouring shoes:
rigidBodyShoe->GetCollisionModel()->SetFamily(3);
rigidBodyShoe->GetCollisionModel()->DisallowCollisionsWith(3);
// Create revolute constraint
if (previous_shoe) {
ChVector3d linkpos = rigidBodyShoe->TransformPointLocalToParent(joint_displacement);
auto link_revolute_shoeshoe = chrono_types::make_shared<ChLinkLockRevolute>();
sys.AddLink(link_revolute_shoeshoe);
}
return rigidBodyShoe;
}
};
// Define a MyEventReceiver class which will be used to manage input
// from the GUI graphical user interface (the interface will
// be created with the basic -yet flexible- platform
// independent toolset of Irrlicht).
class MyEventReceiver : public IEventReceiver {
public:
MyEventReceiver(ChVisualSystemIrrlicht* vsys, MySimpleTank* atank) {
// store pointer application
vis = vsys;
// store pointer to other stuff
mtank = atank;
// ..add a GUI slider to control throttle right via mouse
scrollbar_throttleR = vis->GetGUIEnvironment()->addScrollBar(true, rect<s32>(510, 20, 650, 35), 0, 101);
scrollbar_throttleR->setMax(100);
scrollbar_throttleR->setPos(50);
text_throttleR =
vis->GetGUIEnvironment()->addStaticText(L"Right throttle ", rect<s32>(650, 20, 750, 35), false);
// ..add a GUI slider to control gas throttle left via mouse
scrollbar_throttleL = vis->GetGUIEnvironment()->addScrollBar(true, rect<s32>(510, 45, 650, 60), 0, 102);
scrollbar_throttleL->setMax(100);
scrollbar_throttleL->setPos(50);
text_throttleL = vis->GetGUIEnvironment()->addStaticText(L"Left throttle", rect<s32>(650, 45, 750, 60), false);
}
bool OnEvent(const SEvent& event) {
// check if user moved the sliders with mouse..
if (event.EventType == EET_GUI_EVENT) {
s32 id = event.GUIEvent.Caller->getID();
switch (event.GUIEvent.EventType) {
case EGET_SCROLL_BAR_CHANGED:
if (id == 101) { // id of 'throttleR' slider..
s32 pos = ((IGUIScrollBar*)event.GUIEvent.Caller)->getPos();
double newthrottle = ((double)(pos)-50) / 50.0;
this->mtank->throttleR = newthrottle;
auto mfun = std::static_pointer_cast<ChFunctionConst>(mtank->link_motorRB->GetSpeedFunction());
mfun->SetConstant(newthrottle * 6);
return true;
}
if (id == 102) { // id of 'throttleL' slider..
s32 pos = ((IGUIScrollBar*)event.GUIEvent.Caller)->getPos();
double newthrottle = ((double)(pos)-50) / 50.0;
this->mtank->throttleL = newthrottle;
auto mfun = std::static_pointer_cast<ChFunctionConst>(mtank->link_motorLB->GetSpeedFunction());
mfun->SetConstant(newthrottle * 6);
return true;
}
break;
default:
break;
}
}
return false;
}
private:
ChVisualSystemIrrlicht* vis;
MySimpleTank* mtank;
IGUIStaticText* text_throttleL;
IGUIScrollBar* scrollbar_throttleL;
IGUIStaticText* text_throttleR;
IGUIScrollBar* scrollbar_throttleR;
};
//
// This is the program which is executed
//
int main(int argc, char* argv[]) {
std::cout << "Copyright (c) 2017 projectchrono.org\nChrono version: " << CHRONO_VERSION << std::endl;
// 1- Create a Chrono physical system: all bodies and constraints will be handled by this ChSystemNSC object.
ChSystemNSC sys;
// 2- Create the rigid bodies of the simpified tracked vehicle mechanical system, setting position, mass, inertias
// of their center of mass (COG) etc.
// ..the world
auto ground_mat = chrono_types::make_shared<ChContactMaterialNSC>();
ground_mat->SetFriction(1.0);
auto my_ground = chrono_types::make_shared<ChBodyEasyBox>(60, 2, 60, 1000, true, true, ground_mat);
my_ground->SetPos(ChVector3d(0, -1, 0));
my_ground->SetFixed(true);
my_ground->GetVisualShape(0)->SetTexture(GetChronoDataFile("textures/blue.png"));
sys.AddBody(my_ground);
// ..some obstacles on the ground:
auto obst_mat = chrono_types::make_shared<ChContactMaterialNSC>();
for (int i = 0; i < 50; i++) {
auto my_obstacle = chrono_types::make_shared<ChBodyEasyBox>(
0.6 * (1 - 0.4 * ChRandom::Get()), 0.08, 0.3 * (1 - 0.4 * ChRandom::Get()), 1000, true, true, obst_mat);
my_obstacle->SetMass(3);
my_obstacle->SetPos(ChVector3d(-6 + 6 * ChRandom::Get(), 2 + 1 * ChRandom::Get(), 6 * ChRandom::Get()));
my_obstacle->SetRot(QuatFromAngleY(ChRandom::Get() * CH_PI));
sys.AddBody(my_obstacle);
}
// ..the tank (this class - see above - is a 'set' of bodies and links, automatically added at creation)
MySimpleTank* mytank = new MySimpleTank(sys);
// Create the Irrlicht visualization sys
auto vis = chrono_types::make_shared<ChVisualSystemIrrlicht>();
vis->AttachSystem(&sys);
vis->SetWindowSize(800, 600);
vis->SetWindowTitle("Modeling a simplified trackjed vehicle");
vis->Initialize();
vis->AddLogo();
vis->AddSkyBox();
vis->AddCamera(ChVector3d(0, 0, -6), ChVector3d(-2, 2, 0));
vis->AddTypicalLights();
// Create some graphical-user-interface (GUI) items to show on the screen.
// This requires an event receiver object.
MyEventReceiver receiver(vis.get(), mytank);
// note how to add the custom event receiver to the default interface:
vis->AddUserEventReceiver(&receiver);
// Solver settings
sys.GetSolver()->AsIterative()->SetMaxIterations(100);
// Simulation loop
double timestep = 0.03;
ChRealtimeStepTimer realtime_timer;
while (vis->Run()) {
vis->BeginScene();
vis->Render();
tools::drawGrid(vis.get(), 2, 2, 30, 30, ChCoordsys<>(ChVector3d(0, 0.01, 0), QuatFromAngleX(CH_PI_2)),
ChColor(0.3f, 0.3f, 0.3f), true);
vis->EndScene();
sys.DoStepDynamics(timestep);
realtime_timer.Spin(timestep);
}
if (mytank)
delete mytank;
return 0;
}
static std::shared_ptr< ChTriangleMeshConnected > CreateFromWavefrontFile(const std::string &filename, bool load_normals=true, bool load_uv=false)
Create and return a ChTriangleMeshConnected from a Wavefront OBJ file.
Definition: ChTriangleMeshConnected.cpp:257
std::string GetChronoDataFile(const std::string &filename)
Get the full path to the specified filename, given relative to the Chrono data directory (thread safe...
Definition: ChGlobal.cpp:37
ChQuaterniond QuatFromAngleX(double angle)
Convert from a rotation about X axis to a quaternion.
Definition: ChRotation.cpp:188
void Add(std::shared_ptr< ChPhysicsItem > item)
Attach an arbitrary ChPhysicsItem (e.g.
Definition: ChSystem.cpp:197
virtual std::shared_ptr< ChSolver > GetSolver()
Access the solver currently associated with this system.
Definition: ChSystem.h:124
Representation of a transform with translation and rotation.
Definition: ChCoordsys.h:28
const ChQuaterniond QUNIT(1., 0., 0., 0.)
Constant unit quaternion: {1, 0, 0, 0} , corresponds to no rotation (diagonal rotation matrix)
Definition: ChQuaternion.h:431
Definition of a 3x3 fixed-size matrix to represent 3D rotations and inertia tensors.
Definition: ChMatrix33.h:31
virtual void AddLink(std::shared_ptr< ChLinkBase > link)
Attach a link to the underlying assembly.
Definition: ChSystem.cpp:145
void Remove(std::shared_ptr< ChPhysicsItem > item)
Remove arbitrary ChPhysicsItem that was added to the underlying assembly.
Definition: ChSystem.cpp:221
ChQuaterniond QuatFromAngleY(double angle)
Convert from a rotation about Y axis to a quaternion.
Definition: ChRotation.cpp:192
Class for a timer which attempts to enforce soft real-time.
Definition: ChRealtimeStep.h:25
Projected SOR (Successive Over-Relaxation)
void Set(Real x, Real y, Real z)
Set the three values of the vector at once.
Definition: ChVector3.h:755
void Spin(double step)
Call this function INSIDE the simulation loop, just ONCE per loop (preferably as the last call in the...
Definition: ChRealtimeStep.h:34
void drawGrid(ChVisualSystemIrrlicht *vis, double ustep, double vstep, int nu, int nv, ChCoordsys<> pos, chrono::ChColor col, bool use_Zbuffer)
Draw grids in 3D space with given orientation, color, and spacing.
Definition: ChIrrTools.cpp:879
void SetSolverType(ChSolver::Type type)
Choose the solver type, to be used for the simultaneous solution of the constraints in dynamical simu...
Definition: ChSystem.cpp:250
int DoStepDynamics(double step_size)
Advance the dynamics simulation by a single time step of given length.
Definition: ChSystem.cpp:1634
ChQuaterniond QuatFromAngleZ(double angle)
Convert from a rotation about Z axis to a quaternion.
Definition: ChRotation.cpp:196
Bullet-based collision detection system.
ChVector3< double > ChVector3d
Alias for double-precision vectors.
Definition: ChVector3.h:283
Class defining quaternion objects, that is four-dimensional numbers.
Definition: ChQuaternion.h:34
virtual void SetCollisionSystemType(ChCollisionSystem::Type type)
Set the collision detection system used by this Chrono system to the specified type.
Definition: ChSystem.cpp:325
virtual void AddBody(std::shared_ptr< ChBody > body)
Attach a body to the underlying assembly.
Definition: ChSystem.cpp:133
Class for a physical system in which contact is modeled using a non-smooth (complementarity-based) me...
Definition: ChSystemNSC.h:29
Irrlicht-based Chrono run-time visualization system.
Definition: ChVisualSystemIrrlicht.h:52