Description
Inertia properties of a beam of Cosserat type, defined from an uniform density [kg/m^3], and the following geometric information:
- a section area
- Iyy Izz second moments of area The polar moment of area is automatically inferred via perpendicular axis theorem, Ip=Iyy+Izz. The section is assumed aligned to principal axis of the moment of area tensor, ie. Iyz=0, the section is assumed to be centered in the center of mass.
#include <ChBeamSectionCosserat.h>


Public Member Functions | |
ChInertiaCosseratUniformDensity (double density, double Area, double Iyy_area_moment, double Izz_area_moment) | |
virtual double | GetMassPerUnitLength () override |
Compute mass per unit length, ex.SI units [kg/m] In this case is simply \( \mu = \rho A \), given area in [m^2] and with \( \rho \) density in [kg/m^3]. | |
virtual double | GetInertiaJxxPerUnitLength () override |
Compute the Ixx component of the inertia tensor per unit length, i.e. More... | |
virtual double | GetInertiaJyyPerUnitLength () override |
Compute the Jyy component of the inertia tensor per unit length, i.e. More... | |
virtual double | GetInertiaJzzPerUnitLength () override |
Compute the Jzz component of the inertia tensor per unit length, i.e. More... | |
void | SetDensity (const double md) |
Set the volumetric density, assumed constant in the section. Ex. SI units: [kg/m^3]. | |
double | GetDensity () const |
void | SetArea (const double ma) |
Set the area of section for computing mass properties. Ex. SI units: [m^2]. | |
double | GetArea () const |
void | SetIyy (double mi) |
Set the Iyy second moment of area of the beam (for bending about y in xz plane), defined as \( I_y = \int_\Omega \rho z^2 dA \). More... | |
double | GetIyy () const |
void | SetIzz (double mi) |
Set the Izz second moment of area of the beam (for bending about z in xy plane), defined as \( I_z = \int_\Omega \rho y^2 dA \). More... | |
double | GetIzz () const |
virtual void | SetAsRectangularSection (double width_y, double width_z, double density) |
Shortcut: set Izz, Iyy, Area and density at once, given the y and z widths of the beam assumed with rectangular shape, and volumetric density. More... | |
virtual void | SetAsCircularSection (double diameter, double density) |
Shortcut: set Izz, Iyy, Area and density at once, given the diameter the beam assumed with circular shape, and volumetric density. More... | |
Additional Inherited Members | |
![]() | |
ChBeamSectionCosserat * | section |
Constructor & Destructor Documentation
◆ ChInertiaCosseratUniformDensity()
|
inline |
- Parameters
-
density the density fo the material [kg/m^3], assumed constant Area area of the section, [m^2] Iyy_area_moment second moment of area [m^4] about Y Izz_area_moment second moment of area [m^4] about Z
Member Function Documentation
◆ GetInertiaJxxPerUnitLength()
|
inlineoverridevirtual |
Compute the Ixx component of the inertia tensor per unit length, i.e.
the part associated with rotation about the beam direction. In this case it is \( J_{xx} = \rho I_p \), where \( I_p = I_z + I_y \) is the polar moment of area.
Implements chrono::fea::ChInertiaCosserat.
◆ GetInertiaJyyPerUnitLength()
|
inlineoverridevirtual |
Compute the Jyy component of the inertia tensor per unit length, i.e.
the part associated with rotation of the section on its Y axis. Defined as: \( J_{yy} = \int_\Omega \rho z^2 dA \), with \( \rho \) density in [kg/m^3]. For uniform density it is \( J_{yy} = \rho I_y \), where \( I_y = \int_\Omega \rho z^2 dA \) is the second moment of area.
Implements chrono::fea::ChInertiaCosserat.
◆ GetInertiaJzzPerUnitLength()
|
inlineoverridevirtual |
Compute the Jzz component of the inertia tensor per unit length, i.e.
the part associated with rotation of the section on its Z axis. Defined as: \( J_{zz} = \int_\Omega \rho y^2 dA \), with \( \rho \) density in [kg/m^3]. For uniform density it is \( J_{zz} = \rho I_z \), where \( I_z = \int_\Omega \rho y^2 dA \) is the second moment of area.
Implements chrono::fea::ChInertiaCosserat.
◆ SetAsCircularSection()
|
virtual |
Shortcut: set Izz, Iyy, Area and density at once, given the diameter the beam assumed with circular shape, and volumetric density.
Assuming centered section.
◆ SetAsRectangularSection()
|
virtual |
Shortcut: set Izz, Iyy, Area and density at once, given the y and z widths of the beam assumed with rectangular shape, and volumetric density.
Assuming centered section.
◆ SetIyy()
|
inline |
Set the Iyy second moment of area of the beam (for bending about y in xz plane), defined as \( I_y = \int_\Omega \rho z^2 dA \).
Note: some textbook calls this Iyy as Iy. Note: it can correspond to the same Iyy that you used for the elasticity, ex. in ChElasticityCosseratSimple. Ex. SI units: [m^4]
◆ SetIzz()
|
inline |
Set the Izz second moment of area of the beam (for bending about z in xy plane), defined as \( I_z = \int_\Omega \rho y^2 dA \).
Note: some textbook calls this Izz as Iz. Note: it can correspond to the same Izz that you used for the elasticity, ex. in ChElasticityCosseratSimple. Ex. SI units: [m^4]
The documentation for this class was generated from the following files:
- /builds/uwsbel/chrono/src/chrono/fea/ChBeamSectionCosserat.h
- /builds/uwsbel/chrono/src/chrono/fea/ChBeamSectionCosserat.cpp